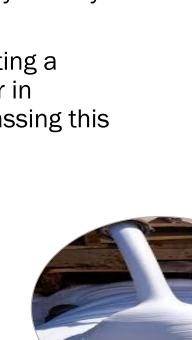
THE USE OF 100% RECYCLED PLASTICS FOR INFRASTRUCTURE PROJECTS IN CONJUNCTION WITH LDCC AND THE ROAD TO CARBON NEUTRALITY

Nico Sutmoller
Dir. Sustainability and Resilience
Aerix Industries

Video courtesy of CJGeO

Agenda


- ➤ Review of Low-Density Cellular Concrete
- Recent Trends & Opportunities
 - Utilization of Permeable LDCC
 - Specifications
 - High Water Ratio reduction of cement utilization
 - Portland Limestone Cement
 - Use of 100% recyclable Plastics
 - Granular / Rock
- > Applications on the horizon

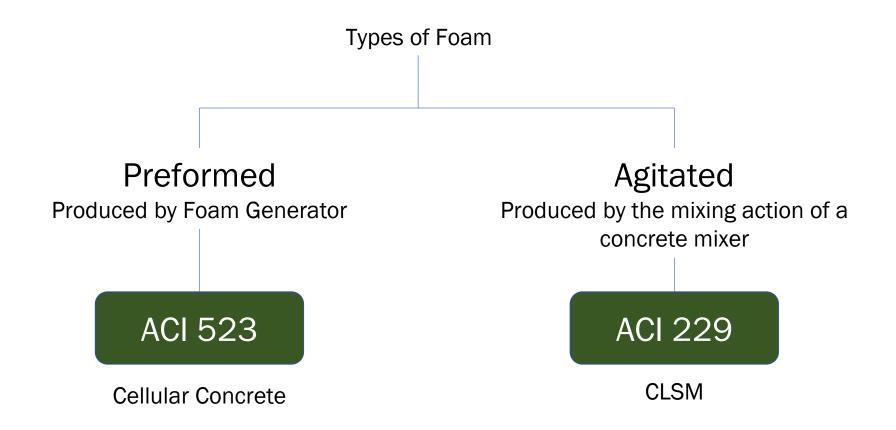
Low-Density Cellular Concrete (LDCC) is defined by ACI 523 as...

Concrete made with hydraulic cement, water and preformed foam to produce a hardened material with an oven dry density of 50 lb/ft³ (800 kg/m³) or less

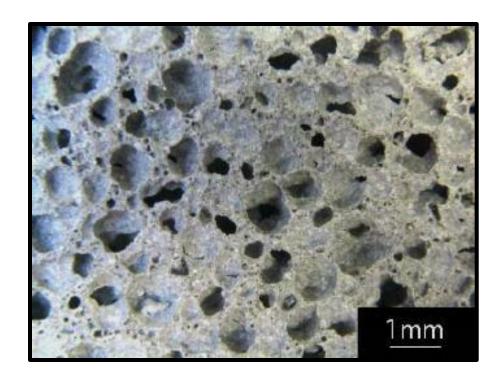
Preformed foam is created by diluting a liquid foam concentrate with water in predetermined proportions and passing this mixture through a foam generator.

LDCC replaces coarse aggregate with AIR

The air cells must be resilient in order to withstand the rigors of mixing and pumping in various applications



Foam has the stability to be calculated as a solid but the properties to be placed as a low density fluid material


Conforms to ACI industry standards

Cellular concrete can be flowable fill (ACI 229) but flowable fill (CSLM) cannot be cellular concrete because of the density being higher than 50pcf.

LDCC pore structure when cured

Cementitious materials encapsulate the air bubbles, then dissipate, leaving a void structure as a replacement to traditional aggregate

Low-Density Cellular Concrete (LDCC) differs from conventional aggregate concrete in the methods of production, the density of the material and the extensive range of end uses.

LDCC on the Road to Carbon Neutrality

- ◆55% Less trucking
 - Truckloads / 1000 cubic yards (765 cubic meters)
 - ◆ Typical Fill 100 trucks
 - Cellular Concrete 45 trucks
 - Elimination in coarse aggregate haul
- ◆55% Less Fuel
- 55% Less Carbon Emissions
- Requires fewer pieces of equipment
 - Cleaner, less congested jobsites
- No Compaction Required
 - What you see is what you get

Ranges of Compressive Strength per ACI523

Oven-d	ry density	Usual range of compressive strength at 28 days								
lb/ft ³	kg/m ³	psi	MPa							
20 to 25	320 to 400	70 to 125	0.48 to 0.86							
25 to 30	400 to 480	125 to 225	0.86 to 1.55							
30 to 35	480 to 560	225 to 350	1.55 to 2.41							
35 to 40	560 to 640	350 to 450	2.41 to 3.10							
40 to 50	640 to 800	450 to 750	3.10 to 5.17							

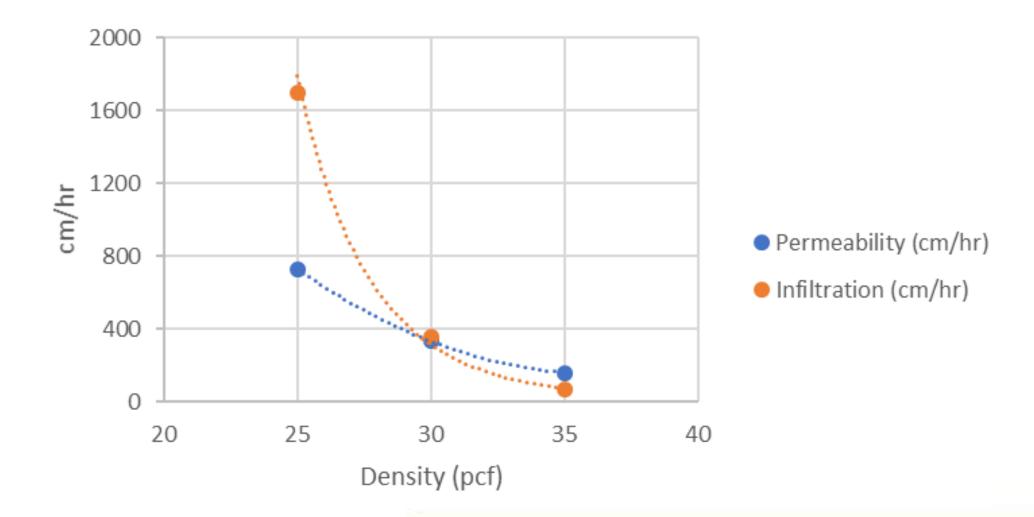
Keep in Mind.....

- Low-Density Cellular Concrete (LDCC)
 - Is designed to replace traditionally compacted backfill
 - It is not designed to be the driving or wearing surface
- Flowable & Self-Compacting
- Rapidly Placed
- Sustainable & Resilient
- ◆ 100% recyclable

Permeable & Non-Permeable LDCC

Coefficient of Permeability k (cm/sec) (log scale)

	10 ²	10 ¹	1.0	10 -1	10 ⁻²	10 ⁻³	10 -4	10 ⁻⁵	10 ⁻⁶	10 ⁻⁷	10 -8	10 -9	
Drainage	Good							Poor		Practically Impermeable			
	Clean	gravel		ds, clean sa		Very fine,	_		"Impermeable" soils, e.g.,				
		gravel mixture, PLDCC						nd silt and clay, LDC (homogenous clays below zone of weathering				
Backfill types													


Permeable vs. Non-Permeable

- Bubble Chemistry is different
 - In non-permeable we need to maintain the bubble structure
 - With Permeable we need to coalesce the bubble structure

PLDCC Permeability / Infiltration

Permeability of PLDCC

Observation of Permeability ±12 hours after placement

*Information provided by CellFill, Grove, OK

Louis Armstrong Airport, New Orleans, LA

Louis Armstrong Airport, New Orleans, LA

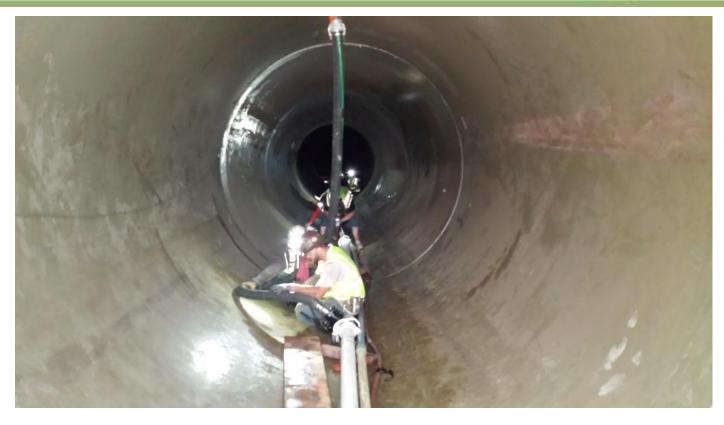
Louis Armstrong Airport, New Orleans, LA

Typical Applications

- Tunnel & Mine Abandonment
- Annular Fills for Tunnels, Water & Sewer Lines
- ♦ Void Fills
- Soft Soil Remediation
- Tremie Applications
- Retaining Structure Backfills
- Slope Stabilization
- Fill for Underground Utility, Conduit & Pipes
- Tanks & Pipeline Abandonment
- Fill Around Conduits and Pipes
- Green Roof Applications

Culvert or Annular Application

◆ 150 yd³ (114 m³)of 500psi (3.4 MPa) pumped 100ft (30.5m) under SR 1 for MaineDot



Kaneohe Kailua Tunnel, Honolulu, HI

Kaneohe Kailua Tunnel, Honolulu, Hl

"Aerix Industries provided a quality bubble and the physical bubble was not compromised at all over the entire distance pumped"

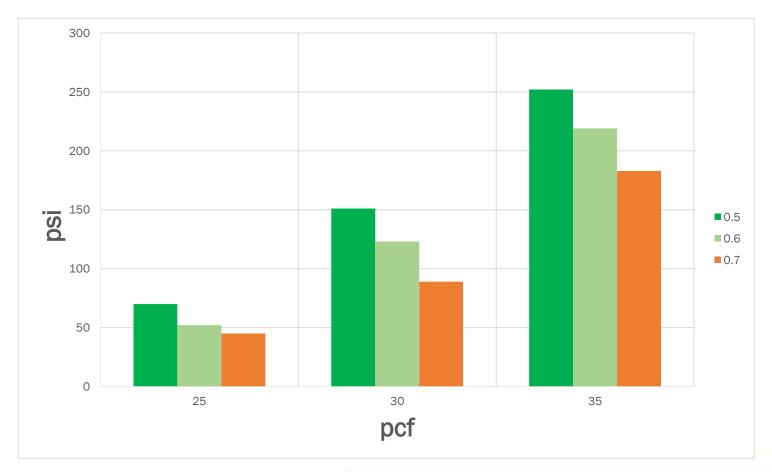
Don Painter, Project Manager of Southland/Mole JV

- ◆ 28,000yd³ 50pcf
- 4" injection line
- Material pumped for 3 miles
- Water chilled from 70° to 50°
- Maintained 18" to 24" controlled lifts due to distance and heat

Flowability

Performance-Based Specifications

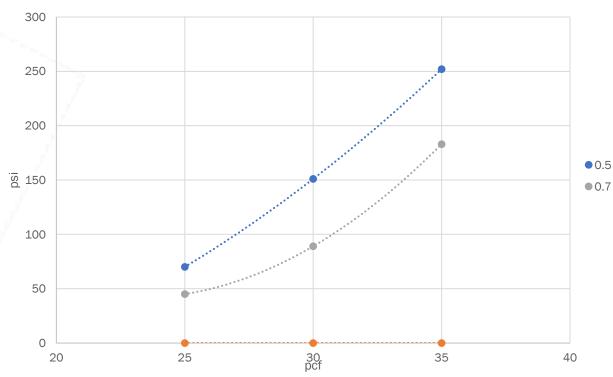
- Designers and engineers are encouraged to start making the shift from prescriptive specifications towards performance specifications.
- **Prescriptive specifications** are like a recipe with ingredients listed while performance specifications focus on the end results.
- Performance specifications for LDCC/PLDCC
 - Gives both the material producer and contractor the flexibility to innovate and leverage the latest technologies to improve structural performance, energy efficiency, resiliency, and carbon reduction.
 - Allows LDCC/PLDCC producers to design with the application in mind rather than use the same specifications regardless of the project.
 - For instance, LDCC in an annular space grouting application does not necessarily have to be of the same strength as the LDCC used in an embankment fill for a highway. A "one mix fits all" approach to LDCC is decidedly prescriptive and should be avoided.


Move towards IL Cement

- Extremely High Inclusion rates (5 15%)
 - Higher in Europe (up to 35%)
- Specific gravity not very consistent
- Much higher Blaine (Fineness) than Type I/II
- Higher Water demand
- Variations through out North America in compressive strengths
- Treat IL like a flyash (test it, test it, test it)
- Two sources 28 days breaks were 100 psi lower than the other

Effect of water/cement (W/C) ratio*

w/c ratio and its' effect on Compressive strengths



A step to Carbon Neutrality

High Water Cement (HWC) ratio verses comparison to lower c/w ratio

- Reduction up to ≈18% in cement utilization
- Specialty HWC
 bubble to handle
 high W/C ratio

Resin 8

- ♦ Only **9.5%** of plastic waste is being recycled
- ♦ The remaining **90.5%** is incinerated or ends up in landfills or the ocean

♦ More than 150 million tons of CO₂e of greenhouse gases emitted per year

RESINS 1-7 = Resin8™

#1 PET

Soft drink and water bottles, microwave food trays, mouthwash #2

Laundry detergent bottles, milk, water, juice jugs #3 PVC

Bottles for shampoo, cleaning, cooking oil, clamshell food containers, plastic wrap #4

Squeezable bottles, bread bags, frozen food bags, plastic bags #**5**

PP Polypropylene

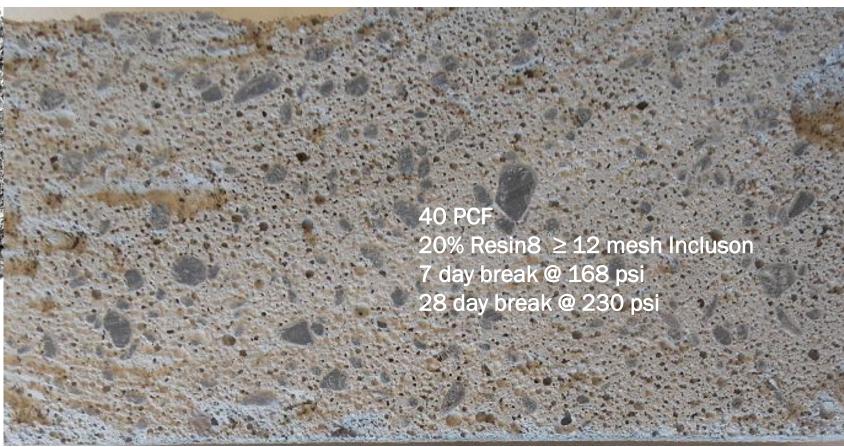
Medicine bottles, yoghurt containers, bottle caps, margarine tubs #6

PS Polystyrene

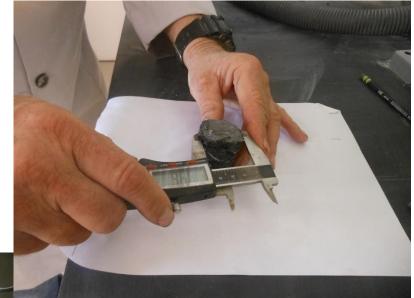
Food trays, cups, egg containers, carry out containers

#7

Other


3 and 5 gallon reusable water jugs, CD cases, sunglasses

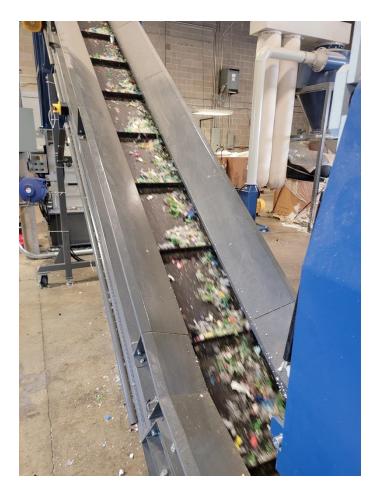
LDCC + Resin 8



INITIAL RESINS ROCK RAW MATERIAL COMPRESSIVE TESTING

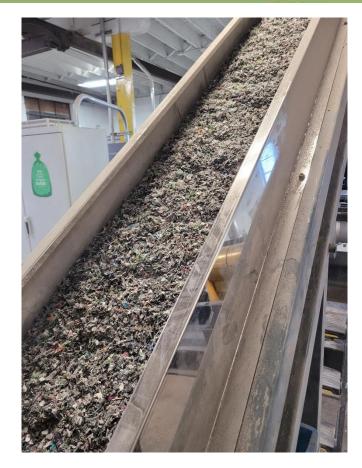
Material fractured at 1150 psi

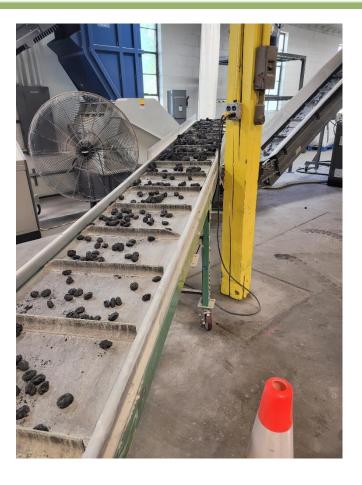
Resin8 Raw materials



The Process

The Process





The Process

Gerhart Cole Phase 1 Testing

Resin8 in testing mold setup on load frame during Consolidation test

Initial Summary of Resin8 Rock

Table 1 - Resin8 Rock Laboratory Test Summary - Phase 1

Laboratory Testing Program of Resin8 Rock

Project No. 23-1669

			(0)	6												riaxial CID Testing		
ample	nple Average Loose Bulk Density (pcf) Average Confined Compressive Strenth (psi)					Strain Rate of 1D Consolidation Creep							ingle of Repose (Deg)	riction angle, phi (deg)	ohesion intercept, c (psi)	ess range (psi)		
လွ	0.5 cf	3.0 cf	10%	20%	165-200 psf	330-400 psf	660-800 psf	1250 psf	800 psf	1250 psf	2500 psf	1250 psf	800 psf	A	Fri	ပိ	Str	Comments
	20.61	i	14.39	39.39	0.0022	0.0024	0.0031	0.0053	-	-	-	-	-	36.0 38.5	34.6	3.6	2.1 - 8.3	
Resin8	-	20.51	17.05	49.94	-	0.0027	0.0035	0.0047	•	ı		-	-	35.8 36.0				
Notes	-	20.52	17.10	47.13	0.0018	0.0026	0.0029	0.0038	0.0001 ^a	0.0006 ^b	0.0043	0.0002 ^a	0.0001 ^a	36.1 38.1	40.0	2.0	2.1 - 8.3	

Notes

- a. Measured 1D Consolidation Creep upon unloading.
- b. Measured 1D Consolidation Creep upon reloading.

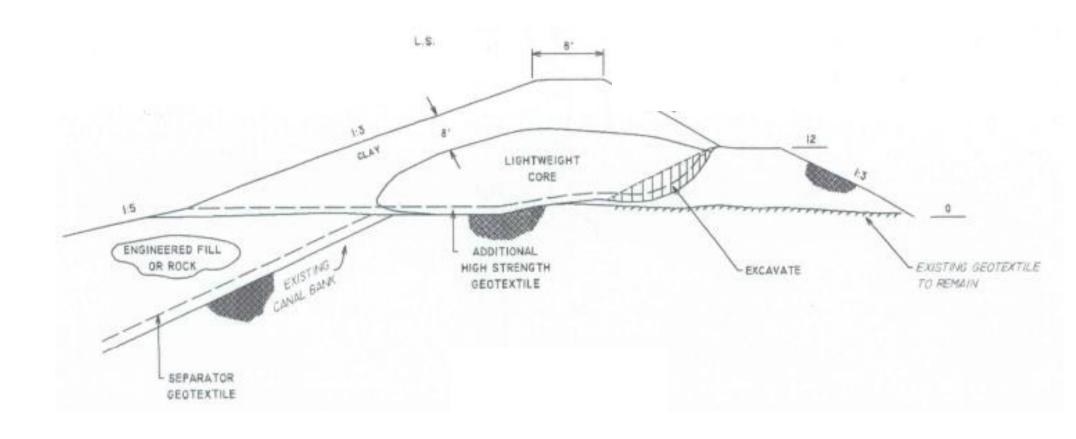
Using LDCC with Driven Piles Increasing the Elevation Needs

Drive piles as per the grade beam plans

 Cap off the piles to the desired height

Place a Low-Density Cellular
 Concrete slab over the piles to the desired elevation

Excavate out over the driven piles to create the forms for the grade beams


Place the appropriate rebar for the grade beams

Pour the grade beams

Voila – With the final pour in place the elevation is achieved! Reducing the down drag on the driven piles.

Lightweight Core in Levee Application

Foster City Levee Improvements, CA

(just South of San Francisco)

LDCC/PLDCC is ideal retaining wall backfill

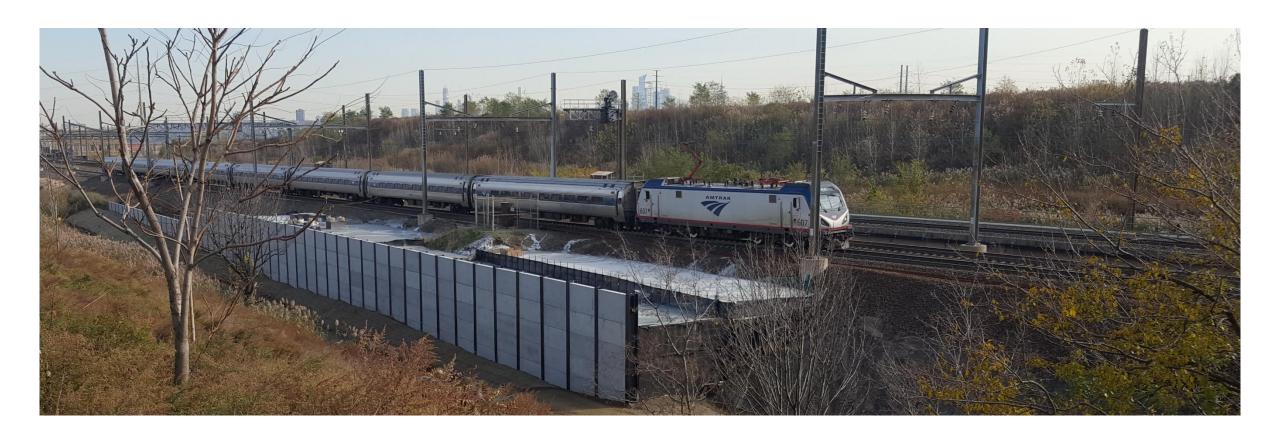
LDCC/PLDCC Advantages

Reduce Lateral Load

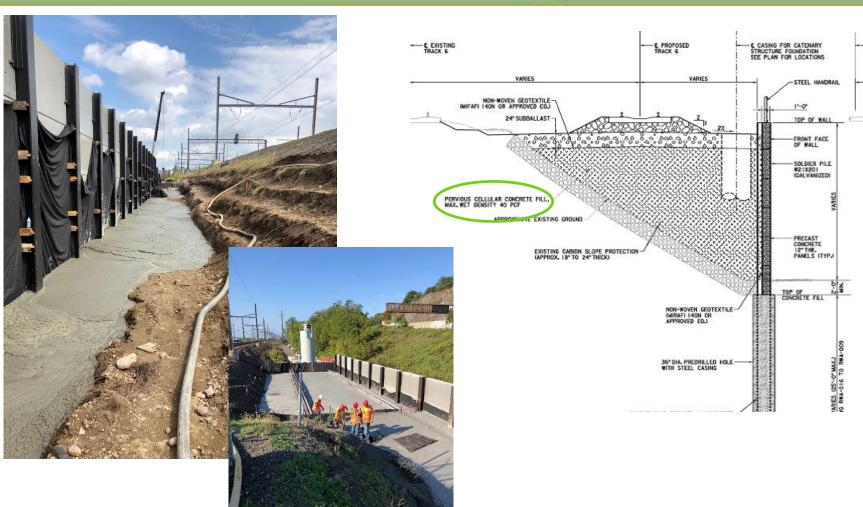
Ease of Placement

Increased lift heights

Reduces schedule impact


Allows for design flexibility

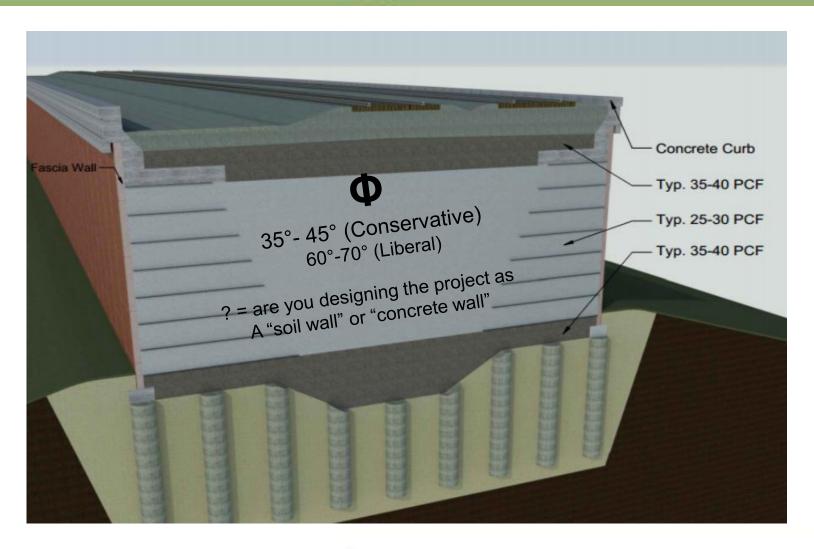
Engineered Permeability



Portal North Bridge, Secaucus, NJ

Portal North Bridge, Secaucus, NJ

Segmental Wall Configuration



Segmental Wall Configuration

Strapping & Internal Angle of Friction

SR 542, Bellingham, WA

Contact Information

Nico Sutmoller

Director of Sustainability & Resilience

[] (804) 740-6772

nsutmoller@aerixindustries.com

