

Geotechnical Applications for Expanded Clay and Shale Lightweight Aggregate

Jack Moore Geotechnical Market Manager

MOVING
INFRASTRUCTURE
FORWARD

Agenda

Arcosa Lightweight – Who we are

Expanded Shale and Clay History

Traditional Markets and Applications

Load Reduction and Lightweight Fill Options

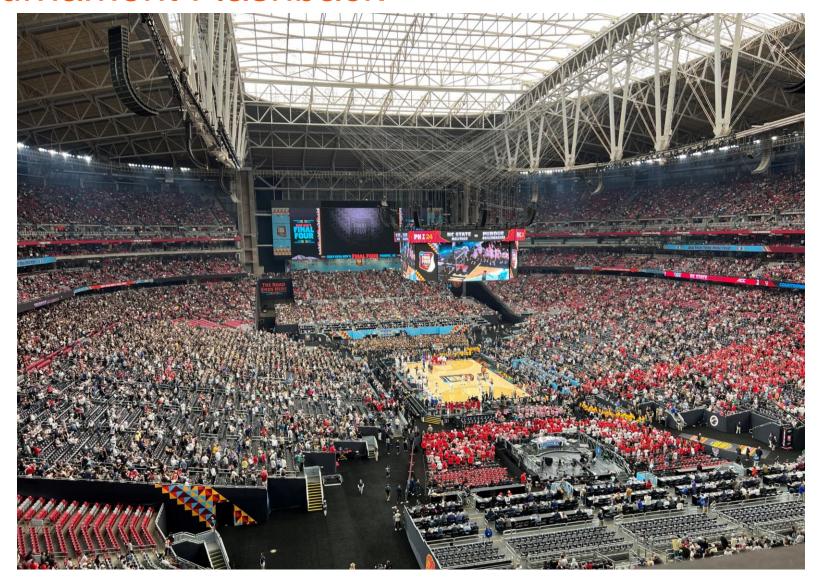
Relevant Physical Properties

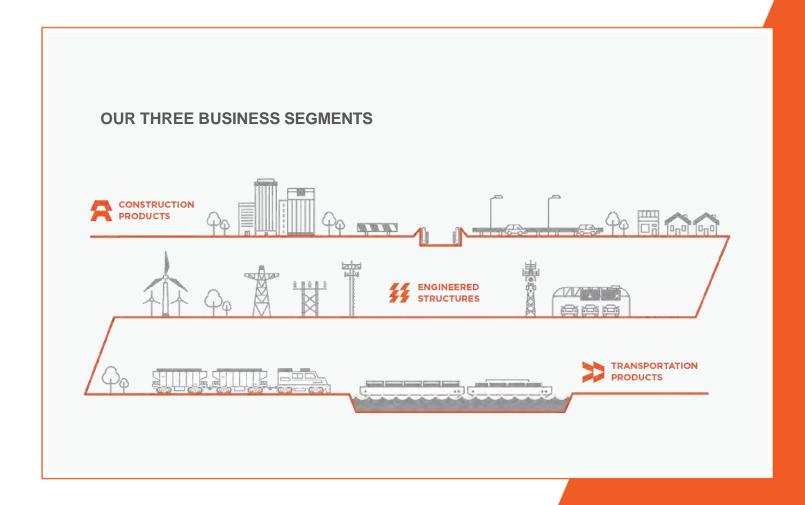
Project Profiles

Select Albuquerque History

- 1912
 - New Mexico was admitted to the U.S. as the 47th state.
- 1928
 - Airport Opens
- 1972
 - Balloon Fiesta Founded
- 1975
 - Bill Gates and Paul Allen Complete BASIC

Albuquerque History


- 1983
 - April 4, University Arena aka The Pit
 - NC State won the national title with a 54-52 victory over Houston
 - Ending of the game is one of the most famous in college basketball history
 - A buzzer beating dunk by the late Lorenzo Charles


NCAA Tournament Flashback

NCAA Tournament Flashback

ARCOSA AT A GLANCE

\$2.3B

Revenues

\$159M

Net Income

\$368M

Adjusted EBITDA

~6,075

Employees

85+

Years of Operating History

3

Infrastructure-related Segments

Revenue, net income, and Adjusted EBITDA are for the year ended 12/31/2023. See Adjusted EBITDA reconciliation in Appendix

BUSINESS OVERVIEW

Arcosa's three segments are made up of leading businesses that serve critical infrastructure markets

ENGINEERED CONSTRUCTION PRODUCTS TRANSPORTATION PRODUCTS **STRUCTURES** \$1,001M \$874M \$116M_{13%} \$245M_{25%} \$434M \$62M_{14%} **REVENUES ADJ. SEGMENT EBITDA REVENUES** ADJ. SEGMENT EBITDA ADJ. SEGMENT EBITDA & MARGIN & MARGIN & MARGIN NATURAL & RECYCLED **UTILITY STRUCTURES BARGES AGGREGATES MARINE COMPONENTS WIND TOWERS SPECIALTY MATERIALS** CONSTRUCTION SITE SUPPORT STEEL COMPONENTS **TRAFFIC & TELECOM STRUCTURES**

Revenues and Adjusted Segment EBITDA and margin for the year ended 12/31/2023. See Adjusted Segment EBITDA reconciliation in Appendix.

Arcosa Lightweight

HOME

ABOUT

APPLICATIONS

CASE STUDIES

DOWNLOADS

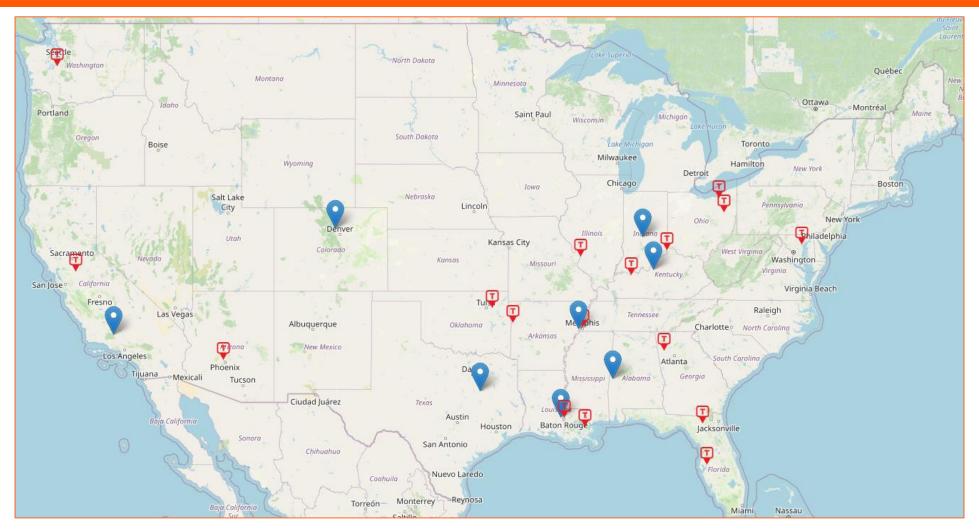
NEWS

Q

AMERICA'S LEADER IN LIGHTWEIGHT AGGREGATE.

Arcosa Lightweight is the largest producer of rotary kiln expanded shale and clay lightweight aggregate in North America, with production facilities in Alabama, Arkansas, California, Colorado, Indiana, Kentucky, Texas and Louisiana.

READ MORE



ARCOSA LIGHTWEIGHT:

THE NEW NAME FOR AMERICA'S LEADER IN LIGHTWEIGHT AGGREGATE

Arcosa Lightweight

Arcosa Lightweight Facilities and Terminal Footprint

Arcosa Lightweight

Boulder, Colorado

11728 Highway 93 Boulder, CO 80303

Frazier Park, California

17410 E Lockwood Valley Rd Frazier Park, CA 93225

Phone

(661) 245-3736

View on Google Maps

Streetman, Texas

14885 South Interstate 45 Streetman, Texas 75859

Phone

(800) 870-3397

View on Google Maps

Arcosa Lightweight Markets

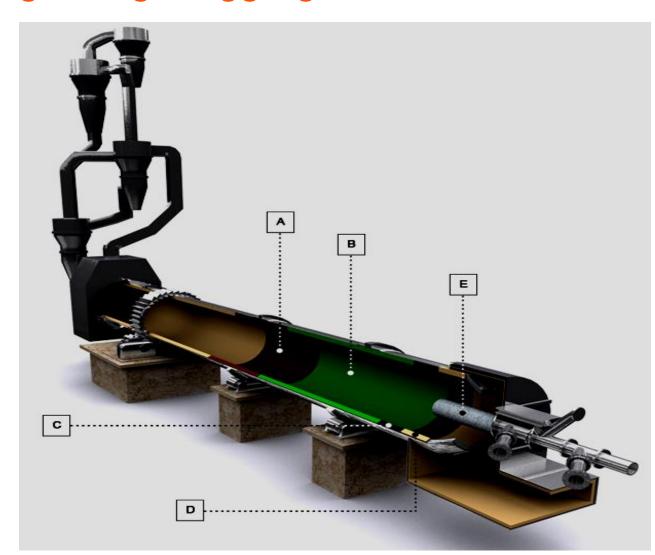
History Of Rotary Kiln Produced Lightweight Aggregate

Brick Industry Roots

"Bee hive" brick kilns

Invention of Stephen Hayde

- Certain clays bloated with heat
- Bloated brick were culls
- Given lemons, make lemonade
- Patent issued in 1918



History Of Rotary Kiln Produced Lightweight Aggregate

Rotary Kiln Method

Study of Time-Temperature Relationship

- Stationary Material Not Important
- Rotary Kiln Time & Temperature Control
- Proved to be the Most Efficient Method

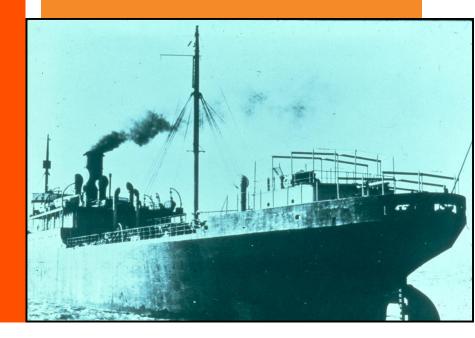
History Of Rotary Kiln LWA - Expanded Shale, Clay, & Slate

Process Patented by Stephen Hayde in 1918

During World War I, Hayde gave patent rights to U.S.

Government

U.S. Government developed lightweight concrete and built LWC ships


USS Selma was the first LWC ship to be commissioned

Story repeated in WW II

At least 9 WW II ships
remain today
Powell River - Canada

USS Selma

Commissioned 1919

History Of Rotary Kiln LWA – Expanded Shale, Clay, & Slate

Other structural uses emerged

Bridges – S.F. Bay Bridge, circa 1930

LWC ship passing under LWC Bridge - 1944

Buildings – Floors and frames

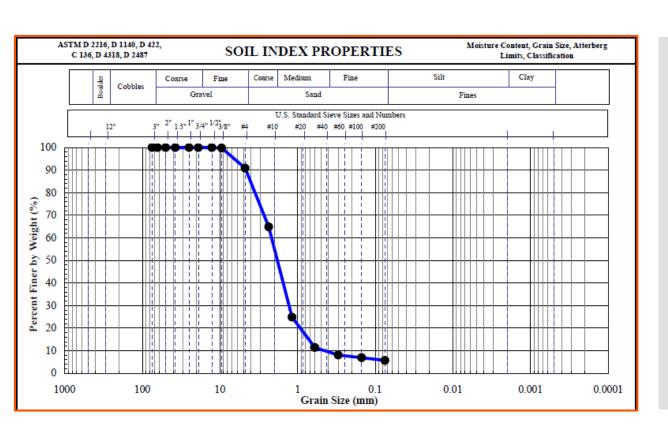
Parking structures –
Prestressed and cast
in-place

150 ft. LWC Double Tee

Manufacturing Process

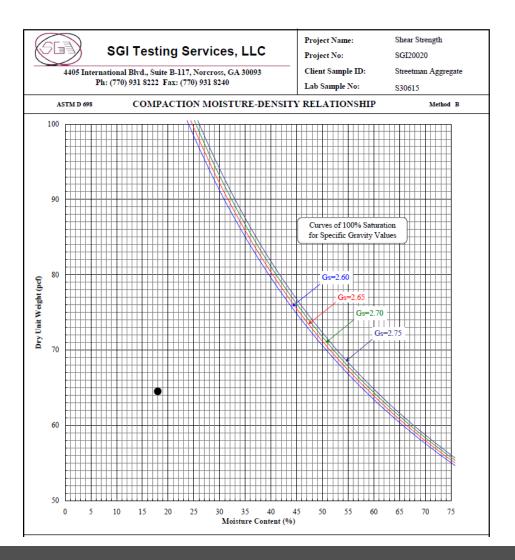
Ground Improvement/Modification

Method	Technology
Vertical Drains and Accelerated Consolidation	Prefabricated Vertical Drains (PVDs)
Deep Compaction	Deep Dynamic Compaction, Vibro-Compaction
Aggregate Columns	Stone Columns, Rammed Aggregate Piers
Soil Mixing	Deep Mixing, Mass Mixing
Grouting	Chemical Grouting, Jet Grouting, etc.
Reinforced Soil Structures	Reinforced Embankments, Walls, and Slopes
Load Reduction	Lightweight Fill Materials: Expanded Shale, Clay, and Slate (Lightweight Aggregates), Expanded Polystyrene, (EPS) Foamed Glass Aggregate (FGA), Low Density Cellular Concrete (LDCC)


Lightweight Fill Materials

Fill Material	Unit Weight (lb./ft³)
ESCS	40 – 65
Low Density Cellular Concrete (LDCC)	20 – 60
Waste Tires	24 – 33
Wood Chips	20 – 35
Expanded Polystyrene (EPS)	0.75 – 2
Foamed Glass Aggregate (FGA)	10 - 25
For Reference: Quarried Select Fill and Aggregates	95 - 135

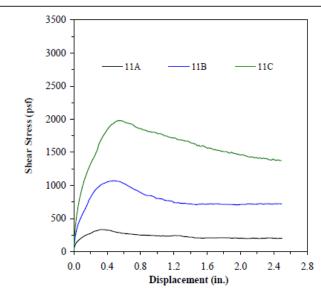
Applicable Physical Properties

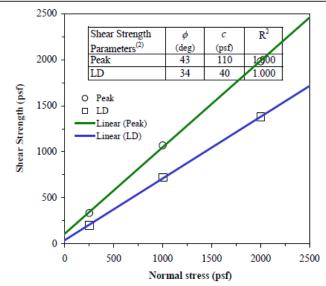

Physical Properties – Grading and Specific Gravity

 Manufactured to meet grading requirements in ASTM C330

Specific Gravity 2.1

Physical Properties – Loose Bulk Density and Proctor




- ASTM C29 Loose Bulk Density
 - 62 pcf
- ASTM D698 (modified) one-point proctor results
 - 65 pcf wetted, surface dry

Physical Properties – Internal Friction Angle

ARCOSA LIGHTWEIGHT DIRECT SHEAR TESTING (ASTM D 3080)

Test Series No. 11: Streetman TX Plant lightweight aggregate nominally compacted under as-received moisture conditions

Test	Shear	Normal	Shear	Soa	king	Conso	lidation	Soil Cor	npaction	Soil Cor	npaction	Shear S	Strength	Secant	Angle	Failure
No.	Box Size	Stress	Rate	Stress	Time	Stress	Time	Moist Density	Moist Content	Moist Density	Moist Content	τ_p	τ_r	ϕ_p	ϕ_{τ}	Mode
	(in x in)	(psf)	(in/min)	(psf)	(hour)	(psf)	(hour)	(pcf)	(%)	(pcf)	(%)	(psf)	(psf)	(deg)	(deg)	
11A	12 x 12	250	0.04	-	-	250	0.5					335	201	53	39	(1)
11B	12 x 12	1000	0.04	-	-	1000	0.5	65.0	5.7			1069	721	47	36	(1)
11C	12 x 12	2000	0.04	-	-	2000	0.5					1981	1375	45	35	(1)

NOTES

- (1) Sliding (i.e., shear failure) was forced to occur along the shear plane between the upper and lower shear box.
- (2) The reported total-stress parameters of friction angle and adhesion were determined from a best-fit line drawn through the test data. Caution should be exercised in using these strength parameters for applications involving normal stresses outside the range of the stresses covered by the test series. The large-displacement (LD) shear strength was calculated using the shear force measured at the end of the test.

SGI TESTING SERVICES, LLC

DATE OF REPORT:	5/6/2024	
FIGURE NO.	1	
PROJECT NO.	SGI20020	·
DOCUMENT NO.		
FILE NO.		

Physical Properties – Durability and Soundness

Table 3 – LA Abrasion	(C	Grading)
-----------------------	----	----------

Passing	Retained on	Grading C Requirements (g)	Test Sample Size (g)
9.50 mm (3/8 in)	6.3 mm (1/4 in)	$2,500 \pm 10$	2,500.0
6.3 mm (1/4 in)	4.75 mm (No. 4)	$2,500 \pm 10$	2,500.0
	Total	$5,000 \pm 10$	5,000.0
	3,846.5		
		Percent Loss	23

Table 4 - Magnesium Sulfate Soundness

Sieve Size	Grading of Original Sample (% Retained)	Mass of Test Fractions Before Test (g)	% Passing Designated Sieve After Test	Weighted % Loss
9.5 to 4.75 mm (¾ to #4)	67.5	300.0	7.0	4.7
			Percent Loss	4.7

Table 5 - Sodium Sulfate Soundness

Sieve Size	Grading of Original Sample (% Retained)	Mass of Test Fractions Before Test (g)	% Passing Designated Sieve After Test	Weighted % Loss
9.5 to 4.75 mm (3/2 to #4)	67.5	300.0	1.7	1.1
			Percent Loss	1.1

- Durability and Soundness Data
 - LA Abrasion 23% loss
 - Magnesium Sulfate 4.7% loss
 - Sodium Sulfate 1.1% loss

Physical Properties - Electrochemical

Chemical Composition	Test Results	Requirements
AASHTO T290 Soluble Sulfate Ion - (ppm)	186*	< 200 ppm
AASHTO T291 Water Soluble Chloride Ion - (ppm)	60	< 100 ppm
AASHTO T288 - (Modified Resistivity) - As Received	5,690*	>3000 ohms-cm
AASHTO T289 - (Ph)	9.57*	5 – 10

Electrochemical Data

- Soluble Sulfate Ion 186 ppm
- Soluble Chloride Ion 60 ppm
- Resistivity 5,690 ohm-cm
- pH 9.57

Physical Properties – Geosynthetic Pullout Resistance

GEOSYNTHETIC PULLOUT TESTING (ASTM D 6706) TEST SERIES NO. P1: Tensar UXMESA 3 (Quint) geogrid in machine direction within compacted Big River expanded clay lightweight aggregate materia under as-received moisture conditions 7000 -O-Max. Pullout Resistance — P1A — Coefficient of Interaction 7000 6000 ----- P1B —∆— P1C 6000 5000 5000 4000 4000 3000 2000 2000 1000 2.0 3.0 4.0 5.0 Displacement (in.) Normal Stress (psi) Test Test Test Normal Pullout Maximum Coefficient Failure Residual Soil Shear Strength No. Rate Pullout Mode Specimen Specimen Stress Width Length Resistance Interaction (psf) (in.) (in.) (psi) (in./min) (degree) (lb/ft) 17.0 50.0 0.04 32 15 P1A 1578 0.97 Pullout | P1B 17.0 50.0 4.0 0.04 32 15 2563 0.82 Pullout 1 8 1 P1C 17.0 50.0 6.0 0.04 32 15 0.75 Pullout

Lateral Earth Pressure

<u>Lateral Earth Pressure</u> is defined by the following formula:

$$F=1/2 \alpha H^2 K_a$$

 α is the density in lbs./ft³

H is the wall height in feet

K is the active earth pressure coefficient and is calculated by the following:

$$\mathbf{K_a} = \frac{1 - \sin \phi}{1 + \sin \phi}$$

 ϕ is the internal friction angle

Lateral Earth Pressure – Wall Height of 15 Feet

Select Fill

```
\alpha of <u>115.0 lbs./ft<sup>3</sup></u>
```

φ of <u>30 degrees</u>

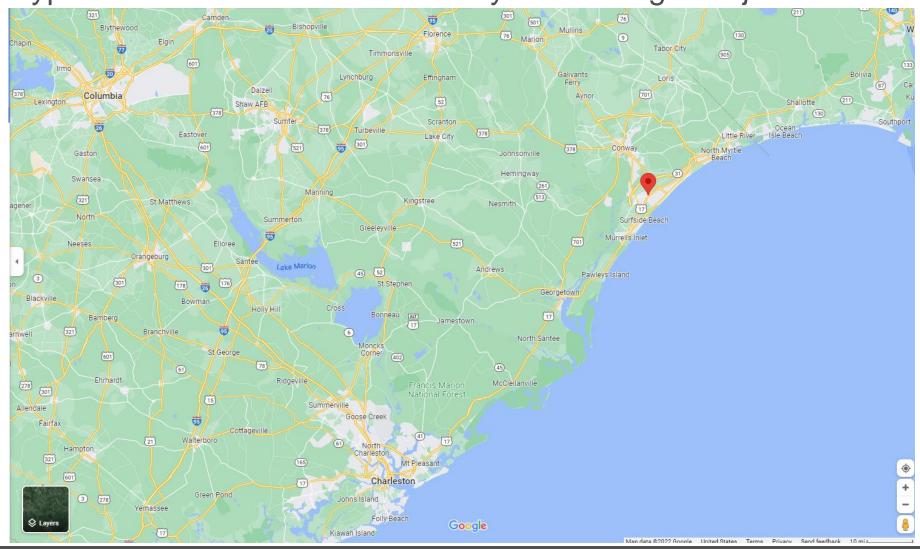
$$K_a \text{ is } 0.33$$


 $F = \frac{1}{2} (115)(15)^2 (0.33) = 4,270 \text{ pounds per foot}$ of lateral earth pressure

Expanded Shale Lightweight Aggregate

```
\alpha of <u>65 lbs./ft³</u>  
\phi of <u>43 degrees</u>  
K_a is <u>0.19</u>  
F = \frac{1}{2} (65)(15)^2 (0.19) = \underline{\textbf{1,176 pounds per foot}} of lateral earth pressure
```

30% of the lateral earth pressure compared to quarried backfill


Vertical Pressure – Wall Height of 15 Feet



- \$120 million redesign of an at-grade intersection by STV
- Dual 1,250' long bridges and associated ramps
- Coastal SC project with poor-bearing soils that required geotechnical modifications to support the structure, roadway, walls and drainage features
- Located near one of the most active earthquake zones on the East Coast

US 17 Bypass at SC 707/Farrow Parkway Interchange Project - SCDOT

Project Constraints

- High existing traffic volume
- No lane closure during summer
- Maintain access to numerous businesses
- 3.5 year construction requirement

Complex Construction Traffic Control

- 8 stages of construction
- Multiple traffic shifts
- Temporary alignments
- Detour routes

US 17 Bypass at SC 707/Farrow Parkway Interchange Project - SCDOT

Geotechnical Challenges

- Poor Subgrade conditions
 - 2' 3' Bridge lift Required
- Settlement concerns Total & Differential
- Slope Embankment stability bearing and seismic

Geotechnical Design Approach

- Lightweight Aggregate Borrow
 - Reduce Magnitude of Settlement
- Prefabricated Vertical Drain (PVD) / Granular Surcharges
 - Increase Rate of Settlement and Facilitate Rapid Construction
- Deep Soil Mixing
 - Improve Seismic Slope Stability and Bridge Abutment Foundation Performance
- Mechanically Stabilized Earth (MSE) Walls
 - 2-Stage MSE Wall Construction with Vertical Slip Joints

US 17 Bypass at SC 707/Farrow Parkway Interchange Project - SCDOT

US 17 Bypass at SC 707/Farrow Parkway Interchange Project - SCDOT

US 17 Bypass at SC 707/Farrow Parkway Interchange Project - SCDOT

US 17 Bypass at SC 707/Farrow Parkway Interchange Project - SCDOT

Project Recognition

NATIONAL RECOGNITION AWARD

2016 Engineering Excellence Award American Council of Engineering Companies

STATE FINALIST AWARD

2016 Engineering Excellence Award -Transportation

American Council of Engineering

Companies of South Carolina

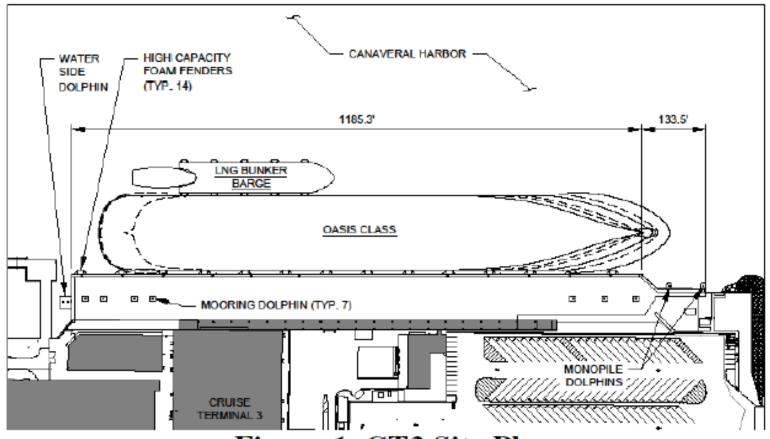
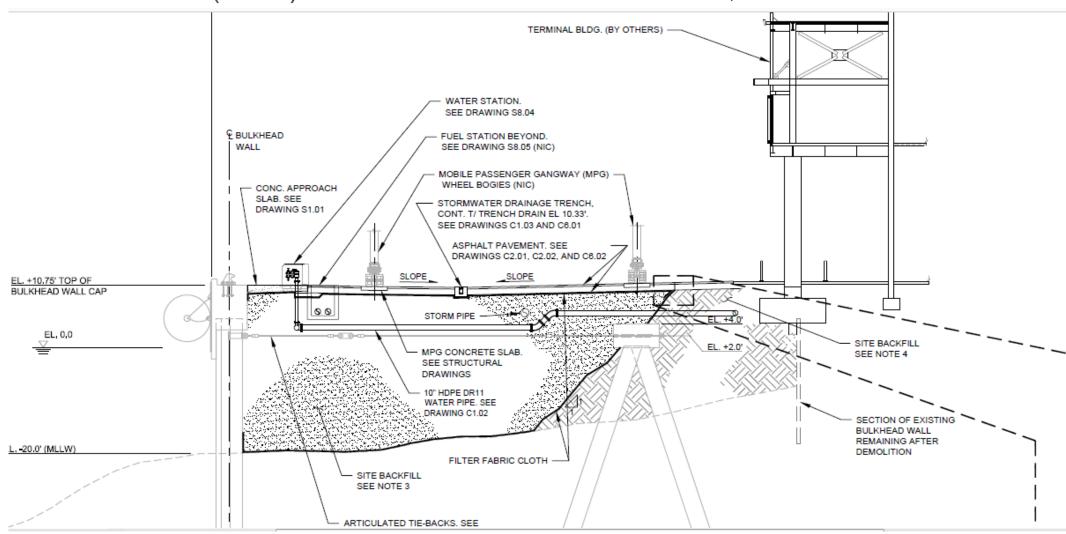



Figure 1. CT3 Site Plan

^{*}Port Canaveral Cruise Terminal 3 Wharf Design and Construction Gary D. Ledford, P.E., M. ASCE, Bill Crowe, P.E., M. ASCE Ports19 Paper and Presentation

- Rebuild of Cruise Terminal 3 to accommodate the increasing size of cruise vessels (Oasis Class)
- Constructed in 1983, the existing open pile wharf was functionally obsolete
- Berth construction and new terminal building were constructed simultaneously

- Lightweight aggregate fill was used to lower the demand on the bulkhead to facilitate reducing the steel pipe-pile section
- The creative lightweight aggregate fill solution provided considerable cost savings in the steel Combiwall section, the depth required, and reduction in the expected long-term settlement of the site.

Cruise Terminal 3 (CT-3) Marine Works Port Canaveral, Florida

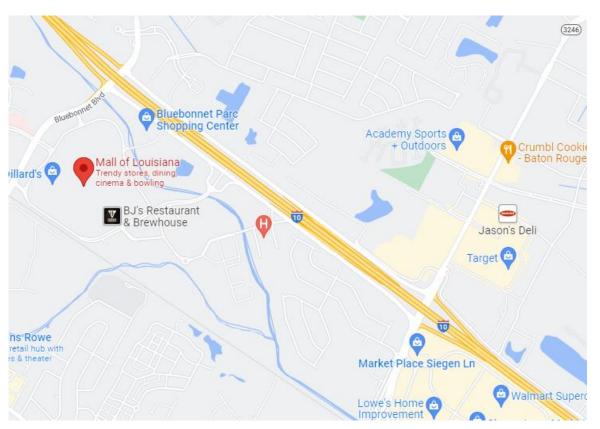
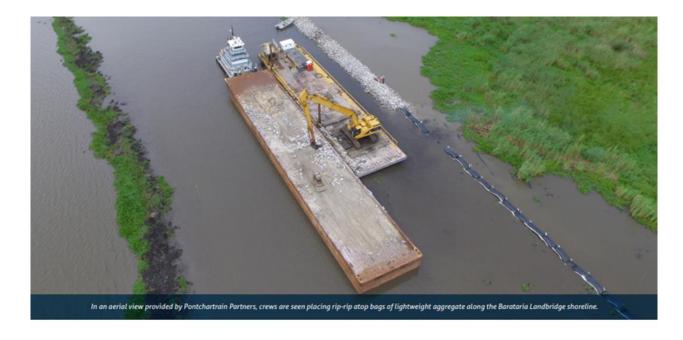

	Table 4. Main Bulkhead Plaxis Anal	veje Doculte		
X e	Description	West Side Bulkhead		East Side Bulkhead (Note 1)
		Regular Fill	LWF	LWF
	Moment (Extreme Condition) kip- ft/ft (kN-m/m)	841 (3741)	501 (2229)	395 (176)
	Moment (Normal Condition) kip-ft/ft (kN-m/m)	684 (3043)	407 (1811)	301 (1339)
	Tie rod force (Extreme) kip/ft (kN/m)	52.5 (766)	37 (540)	34 (496)
<u>'</u>	Tie rod force (normal) kip/ft (kN/m)	45.4 (663)	29.2 (426)	26.6 (388)
	Notes: (1) Regular fill case was not analyzed for east side bulkhead.			

Table 4 indicates that based on west side bulkhead analysis results, <u>bulkhead bending moment</u> <u>would decrease by 40%</u> by using lightweight fill, and the <u>tie rod force would decrease by 30% to 35%</u>. Based on a cost comparison, the savings resulting from the reduction of bulkhead and anchor size would outweigh the lightweight fill cost by approximately \$3 million US. The final bulkhead was designed based on the lightweight fill (LWF) case.

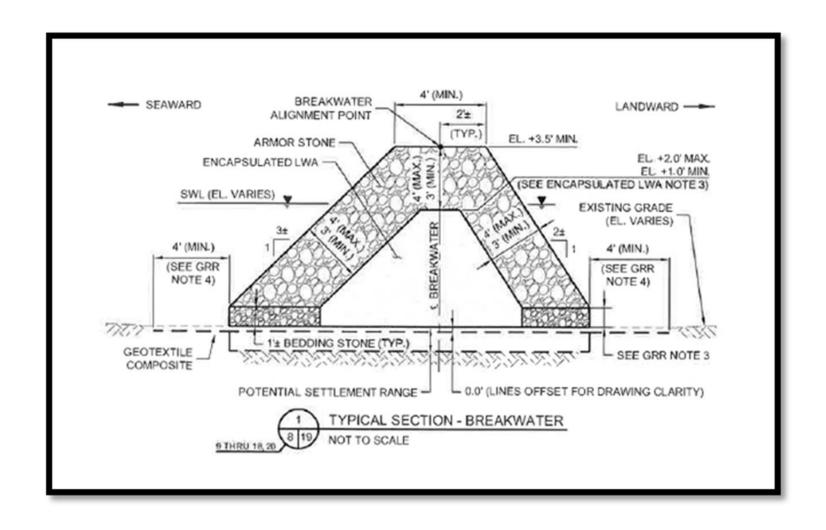
*Port Canaveral Cruise Terminal 3 Wharf Design and Construction Gary D. Ledford, P.E., M. ASCE, Bill Crowe, P.E., M. ASCE Ports19 Paper and Presentation

- Need to reduce traffic congestion at I-10 at Bluebonnet Road and Siegen Lane
- Project added a new overpass above I-10
- Provided access to the Mall of Louisiana via the new Picardy Avenue extension
- Created two one-way eastbound and westbound frontage roads connecting Siegen Lane and Bluebonnet Blvd.

- Geotechnical Challenges
 - Low bearing capacity soils at retaining wall locations
 - Site geometry required MSE wall heights of 30 – 40 feet
 - Critical wall height was 22 feet using natural select fill
 - Transitioned to lightweight aggregate fill at 22 feet up to the maximum wall height
- Using LWA fill reduced the applied pressure on the low bearing capacity soils



- 214,000 ft² of modular block retaining walls
- 120,000 yards³ of lightweight aggregate
- \$50.6 million project was completed November 2006

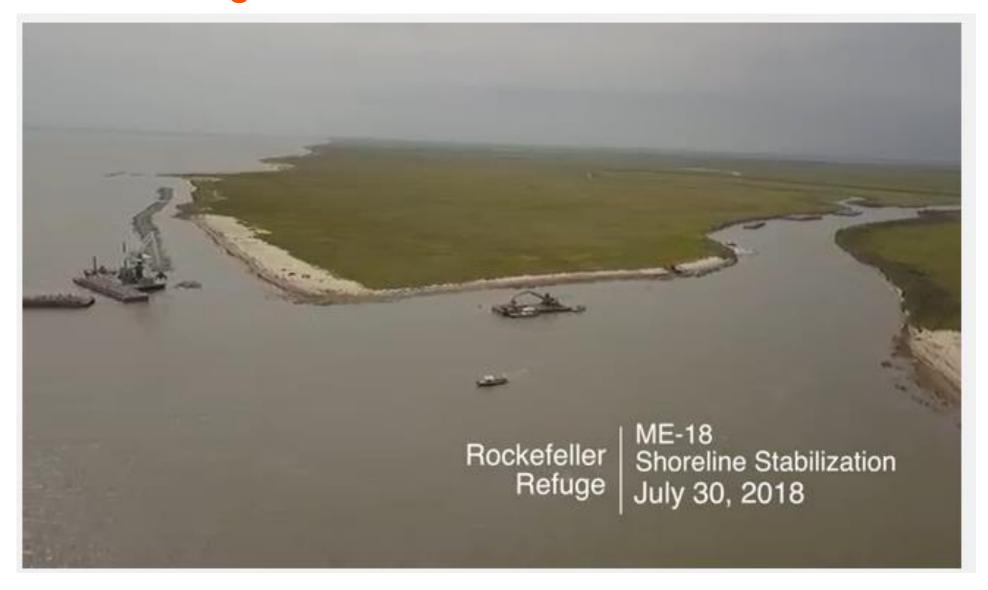

Coastal Restoration

Coastal Restoration Project Utilizes Lightweight Aggregate Encapsulated in Geotextile Bags

Louisiana is shrinking. By some estimates, the state loses roughly 16-square miles of coastline every year. Bays and bayous marked on nautical maps for centuries have vanished, washed away by decades of erosion and storm surge. A series of projects hopes to change that.

Lightweight Aggregate Core for Breakwater Structures

Lightweight Aggregate Core for Breakwater Structures



Rockefeller Refuge Shoreline Stabilization

Rockefeller Refuge Shoreline Stabilization

Geotechnical Properties

Summary

Loose Bulk Density

42 - 62 pcf

High Internal Friction Angle

 $40^{\circ} - 43^{\circ}$

рН

8.5 - 9.6

Granular and Free Draining Aggregate

> 300 in/hour

Durable (LA Abrasion)

17 - 30% loss

Specific Gravity

1.4 - 2.1

Questions

MOVING
INFRASTRUCTURE
FORWARD